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(a) Input video (b) Subject relit with novel illuminations

Figure 2: Given an input video of an actor lit by a single diffuse lighting condition (a), our method is able to relight the
dynamic performance of the subject under any lighting condition (b).

Abstract
We present a learning-based method for estimating 4D

reflectance field of a person given video footage illuminated
under a flat-lit environment of the same subject. For train-
ing data, we use one light at a time to illuminate the subject
and capture the reflectance field data in a variety of poses
and viewpoints. We estimate the lighting environment of the
input video footage and use the subject’s reflectance field
to create synthetic images of the subject illuminated by the
input lighting environment. We then train a deep convolu-
tional neural network to regress the reflectance field from
the synthetic images. We also use a differentiable renderer
to provide feedback for the network by matching the relit
images with the input video frames. This semi-supervised
training scheme allows the neural network to handle unseen
poses in the dataset as well as compensate for the light-
ing estimation error. We evaluate our method on the video
footage of the real Holocaust survivors and show that our
method outperforms the state-of-the-art methods in both re-
alism and speed.

1. Introduction

The New Dimensions in Testimony project at the Uni-
versity of Southern California’s Institute for Creative Tech-

nologies recorded extensive question-and-answer inter-
views with twelve survivors of the World War II Holocaust.
Each twenty-hour interview, conducted over five days, pro-
duced over a thousand responses, providing the material
for time-offset conversations through AI based matching
of novel questions to recorded answers [1]. These inter-
views were recorded inside a large Light Stage system [8]
with fifty-four high-definition video cameras. The multi-
view data enabled the conversations to be projected three-
dimensionally on an automultiscopic display [18, 19]

The light stage system is designed for recording re-
lightable reflectance fields, where the subject is illuminated
from one lighting direction at a time, and these datasets can
be recombined through image-based relighting [7]. If the
subject is recorded with a high speed video camera, a large
number of lighting conditions can be recorded during a nor-
mal video frame duration [39, 8] allowing a dynamic video
to be lit with new lighting. This enables the subject to be re-
alistically composited into a new environment (for example,
the place that the subject is speaking about) such that their
lighting is consistent with that of the environment. In 2012,
the project performed a successful early experiment using a
Spherical Harmonic Lighting Basis as in [10] for relighting
a Holocaust survivor interview. However, recording with
an array of high speed cameras proved to be too expensive
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Figure 3: End-to-end semi-supervised training scheme. We
use reconstruction loss for synthetic images while image-
based lighting loss is applied to both real and synthetic in-
terview images.

for the project, both in the cost of the hardware, and the
greatly increased storage cost of numerous high-speed un-
compressed video streams.

The project settled for recording the survivors in just
a single interview lighting condition consisting of diffuse,
symmetrical lighting from above. But to enable relighting
in the future, each survivor was recorded in a basis of forty-
one lighting conditions in several static poses in a special
session toward the end of each shoot as in Figure 5. The
hope was that at some point, this set of static poses in dif-
ferent lighting conditions, plus the interview footage in dif-
fuse lighting, could eventually be combined through ma-
chine learning to realistically show the interview as if it had
been recorded in any combination of the lighting conditions,
enabling general purpose relighting. This paper presents a
technique to achieve this goal, which provides a practical
process for recording interview footage where the lighting
can be controlled realistically after filming.

2. Related Work
Relighting virtual humans from images and video is

an active research topic in computer vision and computer
graphics. In this section, we summarize some of the most
related work in inverse rendering, image-based relighting,
and learning-based relighting methods.

Inverse Rendering. If photos of a scene can be analyzed
to derive an accurate model of the scene’s geometry and
materials, the model can be rendered under arbitrary new
lighting using forward rendering. This inverse rendering

problem is a long-studied research topic in computer vi-
sion and graphics [24, 29, 41]. Many of these approaches
use strong assumptions such as known illumination [15], or
hand-crafted priors [2].

Unsurprisingly, relighting human bodies and faces has
received particular interest recently. Many parametric mod-
els have been proposed to jointly reconstruct geometry, re-
flectance, and illumination of human bodies [37], faces
[5, 11, 12, 14, 17, 38], eyes [3], eyelids [4], and hair
[16, 42]. [22] relights videos of humans based on estimation
of parametric BRDF models and wavelet-based incident il-
lumination. [44] uses a diffuse model for the face to relight
it with a radiance environment map using ratio images. [9]
performs relighting by using spherical gradient illumination
images to fit a cosine lobe the reflectance function. Several
works estimate spatially-varying reflectance properties of a
scene from either flash [27, 23] or flat-lit images [13]. [40]
uses deep neural networks to estimate the parameters of a
predefined geometry and reflectance model from a single
image.

These parametric models are typically designed to han-
dle specific parts of the human body. Many of these tech-
niques rely on lightweight morphable models for geome-
try, a Lambertian model for skin reflectance, and a low-
frequency 2nd order spherical harmonic basis for illumina-
tion. Unfortunately, these strong priors only capture low-
frequency detail and do not reproduce the appearance of
specular reflections and sub-surface scattering in the skin.

In contrast, we use a deep neural network to infer the
subject’s reflectance field, which can be used to relight the
images without explicitly modeling the geometry, material
reflectance, and illumination of the images.

Image-based Relighting. When a person is recorded un-
der a large number of individual lighting conditions, they
can be accurately relit by linearly combining those one-
light-at-a-time (OLAT) images with the target illumination
[7]. [39] used high-speed video to capture dynamic subjects
with time-multiplexed lighting conditions for relighting, but
required expensive cameras, optical flow computation, and
was data intensive. [8] recorded a coarser lighting basis
from a multitude of viewpoints, allowing post-production
control of both the lighting and the viewpoint. However,
neither technique could be applied to long video segments
due to the large size of the high frame rate video.

Another technique is to transfer reflectance field prop-
erties from a pre-captured subject to a target subject’s per-
formance as in [28]. However, the quality of the lighting
transfer depends on number of captured poses and the simi-
larity in appearance of the two subjects. Relighting can also
be performed by transferring local image statistics from one
portrait image to the target portrait as in [32]; however, this
technique does not work well for extreme lighting changes.

Our approach also uses a set of lighting basis conditions



Figure 4: The architecture of our neural network. The input image is passed through a U-Net style architecture to regress
to the set of OLAT images. When the ground truth is available, the network prioritizes the reconstruction loss of the OLAT
imageset. Otherwise, the network is trained based on the feedback of the relit image.

to perform relighting. But instead of recording OLAT’s
for every moment of the video, our neural network infers
OLATs for each video frame based on exemplars from static
poses, enabling dynamic performance relighting.

Learning-Based Relighting [25] trains a deep neural net-
work to map images of a subject lit by spherical gradient ba-
sis illumination to a set of one-light-at-a-time (OLAT) im-
ages for relighting. Similar to this approach, we map the in-
terview lighting images to a set of OLAT images. But unlike
[25], we employ a semi-supervised training scheme to train
the network due to the lack of ground truth in our dataset
and to work on the single interview lighting condition that’s
available. [34] proposes a neural network that takes a single
portrait photo under any lighting environment and relights
the subject with arbitrary target illumination. This network
was trained on a large set of subjects individuals under a
dense set of lighting conditions to predict the input illumi-
nation and perform relighting by replacing the illumination
at the bottleneck of the neural network. The technique is
overall successful, but the low resolution of the predicted
illumination limits the quality of the relit result. [21] also
uses multitudes of data from 70 subjects with dense lighting
conditions to estimate a more detailed HDR lighting envi-
ronment from a single portrait image. [36] presents a re-
cent advance in Style Transfer techniques, where a video
can be changed to a different style by registering to one or
more keyframes in the new style. This is most often used to
transfer non-photorealistic rendering styles such as a pastel
drawing, but can also be used to transfer a new style of light-
ing. However, this technique has not been applied to create
arbitrarily relightable models and requires registration from
the style exemplars to the video sequence. In comparison,

our method is designed to perform realistic relighting from
a single lighting condition by providing the neural network
a set of reflectance field exemplars of how the subject actu-
ally should appear under OLAT lighting conditions.

3. Method
One of the most effective ways to perform realistic re-

lighting is to combine a dense set of basis lighting condi-
tions (a reflectance field) with according to a novel lighting
environment to simulate the appearance in the new lighting.
However, this approach is not ideal for a dynamic perfor-
mance since it requires either high-speed cameras, or re-
quires the actor to sit still for several seconds to capture
the set of OLAT images. [25] overcomes this limitation
by using neural networks to regress 4D reflectance fields
from just two images of a subject lit by gradient illumina-
tion. They postulate that one can also use flat-lit images
to achieve similar results with less high-frequency detail.
Since the method casts relighting as a supervision regres-
sion problem, it requires pairs of tracking images and their
corresponding OLAT images as ground truth for training.

In the New Dimensions in Testimony project, most of
the Holocaust survivors’ interview footage was captured
in front of a green screen so that the virtual backgrounds
can be added during post-production. However, this setup
poses difficulties for achieving consistent illumination be-
tween the actors and the backgrounds in the final testimony
videos and does not provide the ground truth needed for su-
pervision training. In this paper, we use the limited OLAT
data to train a neural network to infer reflectance fields from
synthetically relit images. The synthetic relit images are
improved by matching them with the input interview im-



Figure 5: Reflectance field: 27 of 41 one-light-at-a-time
images.

ages through a differentiable renderer, enabling an end-to-
end training scheme. For more training details, see Figure
3.

In this section, we describe the data acquisition process,
how we relate the OLAT reflectance field exemplars with
the interview footage, and how we train an end-to-end neu-
ral network to regress reflectance fields for realistic relight-
ing.

3.1. Data Acquisition and Processing

Each Holocaust survivor was recorded over a 180-degree
field of view using an array of 50 Panasonic X900MK 60fps
progressive scan consumer camcorders, each four meters
away framed on the subject. Toward the end of each Holo-
caust survivor’s lengthy interview, they were captured in
several different static poses under a reflectance field light-
ing basis of 41 lighting conditions as in Figure 5. The light-
ing conditions were formed using banks of approximately
22 lights each of the 931 light sources on the 8m diame-
ter dome [8]. This somewhat lower lighting resolution was
chosen to keep the capture time shorter than what would be
required to record each of the 931 lights individually and
to avoid too great of a degree of underexposure so that we
could use the same exposure settings as the interview light-
ing without touching the cameras.

Data Processing. The original resolution of our video
frames images is 1920 × 1080 in portrait orientation. For
each image, we crop the full body of the actors, and then
use Grabcut [31] to mask out the background. The images
are then padded and resized to 512× 512.

Synthetic Tracking Frames. We use a mirror ball image
captured right after the interview session as a light probe
[6]. This light probe represents the illumination of the inter-
view session. For convenience, we convert the light probe

to a latitude-longitude format. Then we use mirror ball im-
ages captured in the OLAT session to find their projections
in our target environment illumination map. By taking a
weighted combination of the images in the OLAT set ac-
cording to these projections, we are able to relight all the
static poses of the actor.

The OLAT images are not as well exposed as the inter-
view lighting since fewer light sources are on, and we dis-
covered that the consumer video cameras applied a weaker
level of gamma correction to the darker range of pixel val-
ues, making dark regions appear even darker, presumably
as a form of noise suppression. Thus, we developed a dual
gamma correction curve to linearize the image data:

I ′ = (1− I) ∗ Iγ1 + I ∗ Iγ2 (1)

where γ1, γ2 describe the gamma we use for the lower and
upper part of the gamma curve, and we interpolate between
these two curves according to the brightness of the pixel.
We optimize γ1, γ2 so that the OLAT reflectance field ex-
emplars, relit with the measured interview lighting condi-
tion, match the appearance of the first frame of the interview
video. Though each subject is only recorded as a reflectance
field in a few poses, these synthetic relit images play an im-
portant role in bringing the output of the network closer to
the illumination of the input video footage.

3.2. Network Architecture

We cast the relighting problem as prediction of the re-
flectance field, and use these measurements to render the
subject under arbitrary illumination. To be consistent with
the Holocaust survivor dataset, we define a reflectance field
to have 41 OLAT images. Our goal is to predict how the
actor would look under 41 specified lighting conditions for
every frame of dynamic performance. The structure of our
neural network resembles the structure of the popular image
transformation architecture with skip connections [30]. The
encoder consists of ten blocks of 3 × 3 convolution layers
each followed by a batch-normalization layer and a leaky
ReLU activation function. A blur-pooling operation [43] is
used at the end of the block is to decrease the spatial resolu-
tion and increase the number of channels. Note that the first
block of the encoder does not have a batch-normalization
layer and uses a 7× 7 convolution layer.

The decoder follows a similar structure with ten blocks
of bilinear upsampling followed by a convolution layer. At
the end of each decoder block, we use skip connections to
concatenate the network features with their corresponding
activations in the encoder. All convolution layers are fol-
lowed by a ReLU activation except for the last convolu-
tion layer where a sigmoid activation is used. At the end
of the decoder is a differentiable renderer that takes as input
a whole set of OLAT images to render a subject under a new



(a) Reference (b) Sun et al.[34] (c) Ours

Figure 6: Comparison with Single Image Portrait Relight-
ing. Our result has greater lighting detail and looks much
closer to the reference lighting.

calibrated illumination condition. For network details, see
Figure 4.

3.3. Loss Function

Our model is trained through the minimization of a
weighted combination of two loss functions. A reconstruc-
tion loss minimizes errors between the set of OLAT images
in the dataset and set of OLAT images predicted by the net-
work. The second loss is an image-based relighting loss
that minimizes the errors between the input image and the
rendered image lit with the predicted reflectance field. The
backgrounds are masked out in all loss calculations.

Reconstruction Loss. This loss ensures the accurate in-
ference of the network by matching the network prediction
with the ground truth. Since the per-pixel photometric loss
often leads to blurry output images, we choose to minimize
the loss in feature space with a perceptual loss. Letting
V GG(i)(I) be the activations of the ith layer of a VGG net-
work [33], the reconstruction loss is defined as:

Lrec =

N∑
i=1

M∑
j=1

‖V GG(j)(Iipred)− V GG(j)(Iigt)‖2 (2)

where N is the number of images in a complete OLAT set,
and M is the number of VGG layers to be used.

Image-Based Relighting Rendering Loss This self-
supervision loss makes the network more robust to unseen
poses of the actor in the training set. Given a predicted
reflectance field R(θ, φ, x, y) and the calibrated interview
lighting environment Li, we can relight the actor as follows:

Irelit =
∑
θ,φ

Rx,y(θ, φ)Li(θ, φ) (3)

where Rx,y(θ, φ) represents how much light is reflected to-
ward the camera by pixel (x, y) as a result of illumination
from direction (θ, φ). Matching this relit image Irelit and
the input image I gives us the rendering loss:

Lrender =

M∑
j=1

‖V GG(j)(Irelit)− V GG(j)(I)‖2 (4)

(a) Reference (b) Texler et al. [35] (c) Ours

Figure 7: Comparison with Style Transfer based relighting.
Our method reproduces more convincing shadows and high-
lights.

The full objective is the weighted combination of the two
loss functions:

L = λ1Lrec + λ2Lrender (5)

Implementation details. We use two sets of data to
train the network. The first set consists of six poses with
groundtruth OLAT images and the six corresponding relit
images showing the reflectance field exemplars under the
simulated interview lighting condition. The second set con-
sists of 100 frames of the target video. We train the first set
with both a reconstruction loss Lrec and a rendering loss
Lrender for 100 epochs, and then we train the second set
for 4 epochs with only the rendering loss before going back
to supervised training. The training process continues until
we reach 1040 epochs. We use the ADAM optimizer [20]
with β1 = 0.9, β2 = 0.999 and a learning rate of 0.001.

4. Evaluation
We evaluate our technique by relighting several hundred

frames of interview footage and comparing to relit images
made with that of [34] and [35]. We do not have ground
truth relighting for each frame of the video to compare to,
so we employ a user study to evaluate our method against
prior works. Finally, we show how our method is able to
realistically relight the dynamic performance of the subject
with arbitrary poses and motions.

4.1. Single Image Portrait Relighting

We first compared our method with a state-of-the-art
lighting estimation and relighting for portrait photos [34].
Their neural network was trained on a dataset of numer-
ous synthetically relit portrait images of 18 individuals from
pre-captured OLAT data. From Figure 6, we can see that
our method performs much more believable relighting, as
the single image portrait relighting result only reproduces
the low-frequency components of the novel illumination.
Note also that we cropped our method’s result down to just
the face to match the output capability of the Single Image
Portrait Relighting network, whereas our model is able to
relight more of the body as shown in Figure 7.



In
pu

tV
id

eo
O

L
A

T
1

O
L

A
T

2
G

ra
ce

C
at

he
dr

al
Pi

sa
C

ou
rt

ya
rd

Figure 8: Relighting results - Row 1: Input interview videos. Row 2,3: OLAT predictions on two patterns. Row 4,5:
Relighting results with two HDRI lighting environments: Grace Cathedral and Pisa Courtyard. See more examples in our
video.

4.2. Relighting as Style Transfer

We next compared our approach with the state-of-the-art
style transfer technique of [35] that takes several keyframes
to use as style and transfer the styles or relighting from those
keyframes to the video. As we can see from Figure 7, the
shading on the inner palms of the actor is not supposed to
be in shadow, but since the provided keyframes do not cover
this pose, [35] predicts the wrong shading in this area. In
contrast, thanks to self-supervised learning, our network is
able to recover a more reasonable rendition of the shading

one would expect for this pose. For side by side compari-
son, see our supplementary video.

4.3. User Study

We conducted a user study to evaluate which relighting
technique produced preferable results. We showed users
a reference image of the subject under one of the OLAT
conditions, and then short video clips of the subject’s in-
terview re-lit by that condition using our approach, Single
Image Portrait Relighting [34], and Style Transfer based



relighting [35]. We finally asked users two questions: 1)
Which video clip looks more like the reference image, and
2) Which video clip looks better? From 61 responses, all
users answered both questions with the same answer: 52
chose the video clip rendered with our approach, and 9
chose the video rendered with [35], while none chose [34].
This showed a clear preference for our approach.

4.4. Relighting Dynamic Performance

We perform relighting for interview footage of three
Holocaust survivors. The first survivor was recorded in
2012, while the other two survivors were recorded in 2015.
In 2012, the OLAT set consists of 41 patterns while there
are 146 patterns used in 2015. Because our method is not
restricted to any OLAT patterns, it can generalize to the
new setup as long as the diffuse lighting condition from
above is guaranteed. For consistency, we choose evenly
distributed 41 out of 146 OLAT patterns to train our net-
work. It is important to note that none of the evaluated in-
terview videos are used to train the neural network. As we
can see from Figure 8, our network is able to predict con-
vincing reflectance fields for novel poses in the interview
videos, enabling it to realistically place these interviews in
any lighting environment.

5. Future Work
In this project, we made use of both the diffusely-lit in-

terview footage and the reflectance field exemplars of each
subject, but we only used a single one of the available view-
points in the data. It seems possible that even better re-
lighting results could be obtained by leveraging some or all
of the views of the subject from the other cameras’ posi-
tions, even though these other views are also recorded in
the same diffuse interview lighting. The reason is that the
multiple viewpoints carry additional information about the
subject’s three-dimensional shape, and knowing the sub-
ject’s 3D shape is also useful for predicting their shading
and shadowing under new lighting conditions. For future
work, it would be of interest to use the 50 viewpoints avail-
able to reconstruct a 3D model such as a Neural Radiance
Field [26] for each frame of the interview footage and to
leverage these models during training so that the network
is better able to learn how shape and the appearance under
novel illumination are connected. However, at this time,
such reconstruction techniques might be prohibitively ex-
pensive to run on hours of video material.

6. Conclusion
In this paper, we presented a deep learning-based video

relighting technique that takes diffusely lit video and a set
of reflectance field exemplars of the same subject as input.
We designed this technique to work with the data available

from the Holocaust survivor interviews recorded in 2014
in the New Dimensions in Testimony project and showed
how we can realistically render the Holocaust survivor in-
terview footage in novel lighting conditions. The technique
suggests that this approach could be used to obtain high-
quality relighting of new interview footage, assuming that
the subjects can also be recorded under a variety of direc-
tional lighting conditions in a number of static poses. This
provides the relighting network with subject-specific infor-
mation for how to relight the video than just the single in-
terview lighting condition alone.
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[36] Ondřej Texler, David Futschik, Michal Kučera, Ondřej
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